设为首页|English Version
当前位置: 首页 >> 师资队伍
教师内容页
冀文涛  
研究领域(方向)

制冷空调换热器、沸腾与凝结相变换热、降膜蒸发流动换热、单相强制对流强化传热技术、二氧化碳换热、高效换热器设计、热泵干燥、航空发动机涡轮叶片冷却技术、流道式蒸发器、低温冷冻换热等。

个人及工作简历

工作简历:

2012-09 至 2015-09 5822yh银河国际能动学院热流科学与工程系 讲师

2013-12 至 2015-01 美国伊利诺伊大学香槟分校 访问学者

2015-09 至 2020-12 5822yh银河国际能动学院热流科学与工程系 副教授

2021-01 至 今 5822yh银河国际能动学院热流科学与工程系 教授

科研项目

[1]. 2022-2024, 陕西省秦创原“科学家+工程师”队伍建设项目:水性油墨凹印机关键技术研究“科学家+工程师”创新团队,负责人

[2]. 2022-2023, 中国航空发动机研究院,******仿真任务,负责人。

[3]. 2021-2025, 航空发动机及燃气轮机重大专项课题, 重型燃气轮机透平叶片冷却*******,负责人。

[4]. 2020-2021, 装备预研航天科技联合基金,TBCC*******传热机理及高效冷却技术研究,负责人。

[5]. 2013-2016, 国家自然科学基金,制冷工质降膜蒸发过程气液两相相互作用和气泡流动特性研究,负责人。

[6]. 2018-2021, 国家自然科学基金,复合改性表面低沸点工质相变换热机理研究,负责人。

[7]. 2017-2019, 国家重点研发计划课题, 煤炭清洁高效利用和新型节能技术-低品位余能网络化利用, 负责人。

[8]. 2013-2016, 教育部博士点基金,水平管外高中温环保制冷工质核态沸腾与膜状凝结传热特性的研究,负责人。

[9]. 2014-2016, 中国博士后科学基金,制冷工质降膜蒸发过程气液两相相互作用特性研究,负责人。

[10]. 2013-2015, 陕西省博士后基金,水平管外高中温环保制冷工质核态沸腾与膜状凝结传热特性的研究,负责人。

[11]. 2013-2015, 教育部重点实验室青年学术骨干培植项目,制冷工质降膜蒸发相变对流传热特性研究, 负责人。

[12]. 2012-2016, 5822yh银河国际基本科研业务费,水平单管外制冷工质沸腾与凝结相变换热试验台的搭建和可视化研究, 负责人。

[13] 2024, 蒸气发生器4.0技术研究,广东美的厨房电器制造有限公司

[14]2024,新型高效壳管式换热器开发,广东美的暖通设备有限公司

[15]2023,换热管检测服务,西部宝德科技股份有限公司

[16]2023,不锈钢散热器性能测试,山东烯泰天工节能科技有限公司 [17]2023,钛换热管检测服务,重庆通用工业(集团)有限责任公司

[18]2023,离心水机建模关键技术:换热管传热、压降性能研究,广东美的暖通设备有限公司

[19]2023,技术咨询服务合同,江苏萃隆精密铜管股份有限公司

[20]2022, 针孔集束式换热器研究, 广东美的制冷设备有限公司

[21]2021, 高通量沸腾换热技术研究开发, 北京大誉环保科技有限公司

[22]2020, 蒸气发生器3.0技术研究,广东美的厨房电器制造有限公司

[23]2019,板式换热器技术的理论分析及数值模拟,浙江三花智能控制股份有限公司

[24]2019,水性油墨凹版印刷机机组烘箱热风干燥机理研究及烘箱风道优化设计,渭南市欧泰印刷机械有限公司

[25]2018,强化传热管开发,湖南湘投金天新材料有限公司

[26] 2018-2019, 单管外沸腾、凝结传热和降膜蒸发实验测试装置开发, 上海龙阳精密复合铜管有限公司

[27] 2016-2017, 降膜管束实验测试装置开发, 麦克维尔空调制冷(武汉)有限公司

[28] 2017, 强化传热管开发,湖南湘投金天新材料有限公司

学术及科研成果、专利、论文

目前已发表SCI论文62篇,中文核心期刊论文18篇,其中第一或通讯作者42篇,论文他引1532 次,国内国际会议特邀报告6次,授权发明专利8项,参与起草行业标准1项。担任《制冷学报》青年编委会主任委员。曾获5822yh银河国际校级优秀博士论文、陕西省优秀博士论文、王宽诚青年学者、中国能源研究会能源创新奖一等奖、中国节能协会节能减排科技进步二等奖、5822yh银河国际优秀硕士论文指导教师、云南电网科技进步奖、云南省电力行业协会电力科技创新成果二等奖等荣誉。

发表英文论文:

2024

[61]Cheng X, Ding Y-Z, Ji W-T*, et al. Experimental investigation on the combined cooling methods of jet impingement and film cooling for the pressure surface of the turbine vane leading cavity[J]. International Journal of Heat and Mass Transfer, 2024, 223: 125221.

[60]Huang K, Cheng X, Yang X, Jiang Lei, WT Ji*, WQ Tao. Experimental and numerical investigation on the film-cooling a gas turbine vane pressure side with various internal rib angles[J]. Applied Thermal Engineering, 2024, 239: 122100.

2023

[59]Wang C-Y, Ji W-T*, Zhao C-Y, et al. Experimental determination of the role of roughness and wettability on pool-boiling heat transfer of refrigerant[J]. International Journal of Refrigeration, 2023, 153: 205-221.

[58]Cheng X, Yu Q-N, Ji W-T*, Wu J-M, He Y-L, Tao W-Q. Numerical study on the effect of different internal angled ribs on the external film cooling performance. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2023;237(8):1683-1698.

[57]Cheng X, Li Z R, Wan H N, Ji WT*, et al. Effect of mass flow ratios on the conjugate heat transfer of a metal turbine vane at medium temperature[J]. International Journal of Heat and Mass Transfer, 2023, 209: 124096.

[56]Sun N, Lu W-R, Ma Y, Zhang MZ, Chen L, Ji WT*, Tao WQ. An experimental and numerical study on the liquid cooling of a gas turbine blade[J]. Applied Thermal Engineering, 2023, 223: 120005.

[55]Zhao C-Y, Yao Z-L, Qi D, Ji WT, Tao WQ. Hydrodynamics and thermal performance of turbulent falling films through horizontal tube bundles[J]. International Journal of Multiphase Flow, 2023, 158: 104299.

[54]Zhang C, Chen L, Qin F, Liu LG, Ji WT, Tao WQ. Lattice Boltzmann study of bubble dynamic behaviors and heat transfer performance during flow boiling in a serpentine microchannel[J]. Applied Thermal Engineering, 2023, 218: 119331.

[53]Cheng X, Li Z-R, Wan H-N, Bi QC*, Ji WT*. Experimental investigation on convective heat transfer of hydrocarbon fuel in transverse corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123586.

[52]Mostafa I, Jin P-H, Ji W-T, Tao WQ. An experimental study of the inundation effect on filmwise condensation heat transfer over horizontal smooth and enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123950. 2022

[51]Jin W, Jia Y, Lei J, Ji WT,Wu JM. Coupled Heat transfer Analysis of Internal and Film Cooling of Turbine Blade under Medium Temperature Conditions[J]. Applied Thermal Engineering, 2022,214: 118792.

[50]Zhao C-Y, Liang L-W, Qi D, Ji WT, Tao WQ. The effect of gas streams on the hydrodynamics, heat and mass transfer in falling film evaporation, absorption, cooling and dehumidification: A comprehensive review[J]. Building and Environment, 2022: 109183.

[49]Zhao C-Y, Yao Z-L, Qi D, Ji WT, Tao WQ. Numerical investigation of tube bundle arrangement effect on falling film fluid flow and heat transfer[J]. Applied Thermal Engineering, 2022, 201: 117828.

[48]Zhao C-Y, Qi D, Ji W-T, et al. A comprehensive review on computational studies of falling film hydrodynamics and heat transfer on the horizontal tube and tube bundle[J]. Applied Thermal Engineering, 2022, 202: 117869. 2021

[47]Zhang C, Chen L, Ji WT, et al. Lattice Boltzmann mesoscopic modeling of flow boiling heat transfer processes in a microchannel[J]. Applied Thermal Engineering, 2021, 197: 117369.

[46]Zhao C-Y, Qi D, Li Q-T, Jin P.H., Ji W.T., Tao W.Q. Peripheral heat transfer prediction of the subcooled falling liquid film on a horizontal smooth tube[J]. Physics of Fluids, 2021, 33 (10): 102104.

[45]Liu X, Chen L, Peng M, Ji WT, et al. Topology optimization of the manifold microchannels with triple-objective functions[J]. Numerical Heat Transfer, Part B: Fundamentals, 2021, 80 (5-6): 89-114.

[44]Chong G-H, Lu X-D, Ji W-T*, et al. Deposition of nano-scale polymer film on micro-fins to enhance the film-wise condensation of very low surface tension substances[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121499.

[43]Ji W-T, Lu X-D, Cheng D-Y, et al. Effect of wettability on nucleate pool boiling heat transfer of a low surface tension fluid outside horizontal finned tubes[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105340.

[42]Jin P-H, Mostafa I, He P, Zhang Z, Zhao CY, Ji WT, Tao WQ. Liquid film boiling on plain and structured tubular surfaces with and without hydrophobic coating[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105284.

[41]Jin W, Wu J, Jia N, Lei J, Ji WT, Xie GN. Effect of shape and distribution of pin-fins on the flow and heat transfer characteristics in the rectangular cooling channel[J]. International Journal of Thermal Sciences, 2021, 161: 106758.

[40]Ji W-T, Xiong S-M, Chen L, et al. Effect of subsurface tunnel on the nucleate pool boiling heat transfer of R1234ze (E), R1233zd (E) and R134a[J]. International Journal of Refrigeration, 2021, 122: 122-133.

2020

[39]Ji W-T, Lu X-D, Chen L, et al. Experimental investigation on the ice melting heat transfer with a steam jet impingement method[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104901.

[38]Peng M, Chen L, Ji WT, et al. Numerical study on flow and heat transfer in a multi-jet microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119982.

[37]Jin P-H, Zhang Z, Mostafa I, Zhao CY, Ji WT, Tao WQ. Experimental study of falling film evaporation in tube bundles of doubly-enhanced, horizontal tubes[J]. Applied Thermal Engineering, 2020, 170: 115006.

[36]Zhao C-Y, Ji W-T, Jin P-H, et al. Falling film evaporation in a triangular tube bundle under the influence of cross vapor stream[J]. International Journal of Refrigeration, 2020, 112: 44-55.

[35]Ji W-T, Lu X-D, Yu Q-N, et al. Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin thickness[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118829.

[34]Ji W-T, Mao S-F, Chong G-H, et al. Effect of Fin Structure on the Condensation of R-134a, R-1234ze(E), and R-1233zd(E) Outside theTitanium Tubes[J]. Journal of heat transfer, 2020, 142 (1):014502.

2019

[33]Mao S-F, Ji W-T*, Chong G-H, et al. Numerical investigation on the nucleate pool boiling heat transfer of R134a outside the plain tube[J]. Numerical Heat Transfer, Part A: Applications, 2019, 76 (11): 889-908.

[32]Ji W-T, Mao S-F, Chong G-H, et al. Numerical and experimental investigation on the condensing heat transfer of R134a outside plain and integral-fin tubes[J]. Applied Thermal Engineering, 2019, 159: 113878.

[31]Ji W-T, Fan J-F, Zhao C-Y, Tao WQ. A revised performance evaluation method for energy saving effectiveness of heat transfer enhancement techniques[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1142-1153.

[30]Jin P-H, Zhang Z, Mostafa I, Zhao C-Y, Ji WT, Tao WQ.. Heat transfer correlations of refrigerant falling film evaporation on a single horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2019, 133: 96-106.

[29]Li S-Y, Ji W-T*, Zhao C-Y, et al. Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 128: 762-772.

[28]Ji W-T, Zhao E-T, Zhao C-Y, et al. Falling film evaporation and nucleate pool boiling heat transfer of R134a on the same enhanced tube[J]. Applied Thermal Engineering, 2019, 147: 113-121. 2018

[27]Ji W-T*, Chong G-H, Zhao C-Y, et al. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes[J]. International Journal of Refrigeration, 2018, 93: 259-268.

[26]Jin P-H, Zhao C-Y, Ji W-T, et al. Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes[J]. Applied Thermal Engineering, 2018, 137: 739-748.

[25]Zhao C-Y, Ji W-T, Jin P-H, et al. Cross vapor stream effect on falling film evaporation in horizontal tube bundle using R134a[J]. Heat Transfer Engineering, 2018, 39 (7-8): 724-737.

[24]Zhang H, Zhang C, Ji W,T et al. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite[J]. Molecules, 2018, 23 (9): 2198.

[23]Zhao C-Y, Ji W-T, Jin P-H, et al. Effect of downward vapor stream on falling film evaporation of R134a in a tube bundle[J]. International Journal of Refrigeration, 2018, 89: 112-121.

[22]JI W-T*, Zhao C-Y, Lofton J, et al. Condensation of R134a and R22 in shell and tube condensers mounted with high density low-fin tubes[J]. Journal of heat transfer, 2018, 140 (9): 091503.

[21]Ji WT*, Zhao P-F, Zhao C-Y, et al. Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability[J]. Nanoscale and Microscale Thermophysical Engineering, 2018: 1-28.

[20]Zhao C-Y, Ji W-T, He Y-L, et al. A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2018, 119: 259-270.

[19]Zhao C-Y, Ji W-T, Jin P-H, et al. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation[J]. International Journal of Heat and Mass Transfer, 2018, 119: 564-576.

[18]Zhao C-Y, Ji W-T, Jin P-H, et al. Experimental study of the local and average falling film evaporation coefficients in a horizontal enhanced tube bundle using R134a[J]. Applied Thermal Engineering, 2018, 129: 502-511.

2017

[17]Ji W-T*, Zhao C-Y, Zhang D-C, et al. Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux[J]. Applied Thermal Engineering, 2017, 127: 1364-1371.

[16]Zhao C-Y, Ji W-T, Jin P-H, Zhong YJ, Tao WQ*. The influence of surface structure and thermal conductivity of the tube on the condensation heat transfer of R134a and R404A over single horizontal enhanced tubes[J]. Applied Thermal Engineering, 2017, 125.

[15]Mou S-C, Luan Y-X, Ji W-T*, Zhang JF, Tao WQ. An example for the effect of round-off errors on numerical heat transfer[J]. Numerical Heat Transfer, Part B: Fundamentals, 2017, 72 (1): 21-32.

[14]Ji W-T*, Jacobi AM, He Y-L, Tao WQ. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2017, 111: 467-483.

[13]Zhao C-Y, Jin P-H, Ji W-T, Tao WQ*. Experimental investigations of R134a and R123 falling film evaporation on enhanced horizontal tubes[J]. International Journal of Refrigeration, 2017, 75: 190-203.

2016

[12] W.-T. Ji, C.-Y. Zhao, D.-C. Zhang, S. Yoshioka, Y.-L. He, W.-Q. Tao*, Effect of vapor flow on the falling film evaporation of R134a outside a horizontal tube bundle, International Journal of Heat and Mass Transfer, 92 (2016) 1171-1181.

[11] C.-Y. Zhao, W.-T. Ji, P.-H. Jin, W.-Q. Tao*, Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube, Applied Thermal Engineering, 103 (2016) 177-186.

2015

[10]Ji WT, Numata M, He Y-L, Tao Wen-Quan*. Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2015, 86: 744-754.

[9]Ji W-T, Li Z-Y, Qu Z-G, Tao W-Q*. Film condensing heat transfer of R134a on single horizontal tube coated with open cell copper foam[J]. Applied Thermal Engineering, 2015, 76: 335-343.

[8]Ji W-T, Jacobi AM, He Y-L, Tao W-Q*. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2015, 88: 735-754.

[7]Ji W-T, Zhao C-Y, He Y-L, Tao WQ*. Experimental validation of Cooper correlation at higher heat flux[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1241-1243.

2014

[6] Ji W-T, Zhao C-Y, Zhang D-C, Tao W-Q*. Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes[J]. International Journal of Heat and Mass Transfer, 2014, 77: 194-201.

2012

[5].Ji WT, Zhao CY, Zhang DC, He YL,Tao WQ*. Influence of condensate inundation on heat transfer of R134a condensing on three dimensional enhanced tubes and integral-fin tubes with high fin density[J]. Applied Thermal Engineering, 2012, 38 (0): 151-159.(SCI:917UV)

2011

[4].Ji WT,Qu ZG*, Li ZY, Guo JF, Zhang DC, Tao WQ, Pool boiling heat transfer of R134a on single horizontal tube surfaces sintered with open-celled copper foam[J], International Journal of Thermal Science,2011,50(1): 2248-2255.(SCI:820XE)

[3].Ji WT, Zhang DC, He, YL, Tao WQ*, Prediction of Fully Developed turbulent Heat Transfer of Internal Helically Ribbed Tubes - an Extension of Gnielinski Equation, International Journal of Heat and Mass Transfer, 2011, 55 (4): 1375-1384.(SCI:895BC)

2010

[2].Ji WT, Zhang DC, Feng N, Guo J. F. Numata, M. Xi G. N. Tao W Q*. Nucleate Pool Boiling Heat Transfer of R134a and R134a PVE Lubricant Mixtures on Smooth and Five Enhanced Tubes[J]. Journal of Heat Transfer- ASME, 2010, 132 (11): 8.(SCI:672VM)

2007

[1].Zhang DC, Ji WT, Tao WQ*. Condensation heat transfer of HFC134a on horizontal low thermal conductivity tubes[J]. International Communications in Heat and Mass Transfer, 2007, 34 (8): 917-923.(SCI:212CD)

发表中文论文:

[18]万红牛,丁俣中,程想,陈黎,王进,冀文涛*,陶文铨.宽雷诺数下肋参数对U型内冷通道流动与换热特性影响的实验研究[J].5822yh银河国际学报,2024:1-10.

[17]程想,丁俣中,万红牛,冀文涛*,陶文铨.冲击孔位置对涡轮叶片冲击/气膜复合冷却特性影响的实验研究[J].5822yh银河国际学报,2023,57(12):59-71.

[16]冀文涛,陈黎,任秦龙,戴艳俊, 陈磊, 郑春宇, 方文振, 李楠, 毛帅峰, 陶文铨*.数值传热学课程产学研探索与实践[J].高等工程教育研究,2023(S1):182-184.

[15]张科,段敬添,雷蒋,王子瑞,冀文涛,武俊梅.基于MRV的菱形肋柱冷却通道三维全流场分析[J].航空动力学报,2023:1-11.

[14]贾宁,靳伟,武俊梅,雷蒋,冀文涛.斜劈式翼型扰流柱冷却通道流动与换热数值研究[J].航空动力学报,2021,36(01):61-69.

[13]赵创要,樊菊芳,李安桂,冀文涛,靳蒲航,陶文铨.饱和温度及热流密度对水平管外降膜蒸发传热影响的实验研究[J].暖通空调,2020,50(05):107-110.

[12]张虎,马奕新,王娴,冀文涛,李跃明,陶文铨.添加物对氧化硅凝胶隔热性能影响的实验研究[J].工程热物理学报,2018,39(05):1039-1043.

[11]赵鹏飞,冀文涛*,赵二涛,何雅玲,陶文铨.不同润湿性表面池沸腾换热特性研究[J].中国科技论文,2018,13(11):1211-1216.

[10]冀文涛, 张定才, 赵创要, 何雅玲, 陶文铨. 高热通量水平管外池沸腾传热[J]. 化工学报, 2016, 67 (S1): 28-32.

[9] 郭剑飞, 李增耀, 屈治国, 冀文涛, 陶文铨, 水平金属泡沫管外R134a凝结传热实验研究, 工程热物理学报, 32(5) (2011) 839-842.

[8] 冀文涛, 屈治国, 郭剑飞, 张定才, 陶文铨, 水平管外开孔铜泡沫R134a池沸腾换热实验研究, 工程热物理学报, 31(7) (2010) 1185-1188.

[7]冀文涛, 冯楠, 张定才, 郭剑飞, 陶文铨, 润滑油对水平管外R134a池沸腾换热的影响, 工程热物理学报, 30(5) (2009) 821-823.

[6]张定才, 冀文涛, 陶文铨, 何雅玲, 不凝气体对R123凝结换热的影响, 工程热物理学报, 30(12) (2009) 2062-2064.

[5]冀文涛, 张定才, 冯楠, 陶文铨, 水平管外含油及纯R134a池沸腾换热特性比较, 工程热物理学报, 29(7) (2008) 1195-1198.

[4]赵创要,冀文涛,陶文铨. R404A在低导热系数管外凝结传热的实验研究.工程热热物理学报,35(1)132-135.

[3] 赵创要,冀文涛,陶文铨.R134a在水平管外降膜蒸发的实验研究 .工程热热物理学报.179-183.

[2] 张定才,杜佳迪, 冀文涛,张振,朱春洁, 何雅玲, 陶文铨.R134a/R125混合工质水平管外凝结换热.化工学报.65(S1)119-124

[1] 张定才,田松娜,冀文涛,赵安利,范晓伟; 陶文铨.R417A在水平双侧强化管外沸腾换热研究 .制冷学报,35(3)114-118.

授权发明专利:

[1].陶文铨,田恩,金宇,冀文涛,何雅玲. 一种废气余热回收换热器,发明专利:ZL201610340116.9,授权公告日:2017.02.22,申请日:2016.05.20.

[2].冀文涛,李增耀,陶文铨. 水平管束及单管外制冷工质降膜蒸发、池沸腾和凝结相变换热测试装置, 发明专利:ZL201710453004.9,授权公告日:2019.01.29,申请日:2017.06.15.

[3].冀文涛,靳蒲航,王凯,付铁岩,曲少杰,陶文铨.一种高效复合双侧强化传热管, 发明专利:ZL201910356278.5, 授权公告日:2021.07.13,申请日:2019.04.2.

[4].冀文涛,崇国魂,陶文铨.一种表面疏水改性复合冷凝强化传热管及其制备方法,发明专利:ZL201910784603.8, 授权公告日:2021.03.16,申请日:2019.08.23.

[5].冀文涛,孙宁,何雅玲, 陶文铨. 一种具有单一煤油冷却通道的涡轮叶片,发明专利:ZL202110820765.X, 授权公告日:2022.09.16,申请日:2021.07.20.

[6].冀文涛,孙宁,何雅玲, 陶文铨. 一种具有煤油冷却微通道的涡轮叶片, 发明专利:ZL202110820778.7, 授权公告日:2022.09.16,申请日:2021.07.20.

[7].冀文涛,孙宁,于秋楠, 何雅玲,陶文铨. 一种具有气膜冷却结构的涡轮叶片. 发明专利:ZL202110875707.7, 授权公告日:2022.09.16,申请日:2021.07.30.

[8].冀文涛,孙宁,程想,黄昆,熊世明,何雅玲. 一种燃气轮机叶片内外耦合的多尺度计算方法,发明专利:202110904246.1,授权公告日:2024.01.06,申请日:2021.08.06.

联系方式
电子邮箱:wentaoji@xjtu.edu.cn
联系电话:029-82665445
联系地址:陕西省西安市咸宁西路28号东三楼乙209室
更新日期:2024-04-02