设为首页|English Version
当前位置: 首页 >> 师资队伍
教师内容页
杨鹏  
研究领域(方向)

1、热质传递过程强化机制及预测

(1)含不凝结气体的相变换热机制及关联式表征

(2)气液两相流动传热机制及数值预测

2、高效热功转热技术及调控机制

(1)交变流复杂流动及相位调控

(2)热声系统优化及能效提升

3、系统热流输配及能质管理

(1)新一代换热技术在家电行业的应用

(2)低温推进剂长期存贮及温压调控

(3)受限空间及功率器件的热管理

个人及工作简历

教育经历:

2008/09-2012/06: 华北水利水电大学,电力学院,工学学士

2012/09-2018/12: 5822yh银河国际,动力工程及工程热物理,工学博士(硕博连读)

2016/01-2018/01: 美国伊利诺伊大学香槟分校,联合培养博士 工作经历:

2019/01-2022/02:5822yh银河国际,能动学院,助理教授/博士后

2022/03-至今: 5822yh银河国际,能动学院,副教授

科研项目

2024~

新型无氧蒸技术研究

美的厨电

主持

2024~

冰箱用换热器性能测试平台开发

合肥观瑞

主持

2023~

热交换器高性能化技术研究

海尔集团

主持

2023~

大烤箱能效提升研究

美的厨电

主持

2023~

冰箱结霜控制及高效化霜技术研究

美的冰箱

主持

20232~

2023-9

喷发物尘埃分析仪模块热设计计算及仿真分析

国家攻关项目

主持

20226~

2022-12

面向中深层地热的热泵清洁供能能效提升技术

国家电网

主持

20226~

2022-12

促进新能源消纳的电动热泵-冷热双蓄耦合清洁供能技术

国家电网

主持

20211~

2023-12

含可凝结组分的混合工质热机工作机理及性能强化研究

国家自然科学基金项目

主持

2020~2021

低温液体主动制冷与热力学排放系统

重点实验室基金

主持

2020~2021

大气密度传感器QCM热脱附结构热设计计算及仿真分析

国家攻关项目

主持

2022~

百kWe级热声系统中双流固共轭传热特性与声波-非均热流互耦机制及其性能调控策略研究

国家自然科学基金项目

参与

2023~

微细管径集成式分流技术

美的制冷

参与

2021~2022

基于多场协同理论的高温大负荷户内变电站降噪技术研究

国家电网

参与

2020~2023

非线性热声系统稳定性与分岔行为及参数解耦调控机理研究

国家自然科学基金项目

参与

2017~2020

极低温区国际基准级温度测量研究

国际科技创新合作项目

参与

学术及科研成果、专利、论文

代表性论文:

1.Yang P, Wang L, Qing T, et al. Multi-objective optimization of geometrical parameters of laterally perforated on silt fin by gray relation analysis based on Taguchi method[J]. International Journal of Thermal Sciences, 2024, 196: 108705.

2.Yang P, Qing T, Lei X, et al. Experimental study on thermal–hydraulic performance of moist air inside flat tube of two kinds of plate-fin heat exchangers[J]. Applied Thermal Engineering, 2023: 122121.

3.Yang P,Yang X, Liu Y. Experimental study on performance improvement of a household refrigerator with a flying-wing evaporator[J]. International Journal of Refrigeration, 2023, 155: 23-31.

4.Yang P, Yang X L, Liu Y. Experimental study on a new finned tube defrosting heater for household frost-free refrigerators[J]. International Journal of Refrigeration, 2023, 156: 92-101.

5.Yang P,Wang X, Liu Y, et al. Numerical Simulation of Vapor Configuration and Bubbles Coalescence in Cryogenic Propellant Tank Under Microgravity[J]. Microgravity Science and Technology, 2023, 35(2): 20.

6.Yang P,Yang X, Liu Q, et al. Performance improvement of a household freezer with a microchannel flat-tube evaporator[J]. Case Studies in Thermal Engineering, 2023, 49: 103394.

7.Yang P, Wang X, Zhi C, et al. Numerical investigation on effects of fuel rod with different bow deformation ratio X on two-phase boiling and flow performances of coolant in fuel assembly[J]. Progress in Nuclear Energy, 2023, 161: 104754.

8.Yang P,Zhang T, Hu L, et al. Numerical investigation of the effect of mixing vanes on subcooled boiling in a 3× 3 rod bundle channel with spacer grid[J]. Energy, 2021, 236: 121454.

9.Yang P, Zhang H, Zheng Y, et al. Investigation and optimization of heat transfer performance of a spirally corrugated tube using the Taguchi method[J]. International Communications in Heat and Mass Transfer, 2021, 127: 105577.

10.Yang P, Liu Q, Liu H, et al. Dynamic characteristics of a domestic freezer with a microchannel flat-tube condenser[J]. Science and Technology for the Built Environment, 2022, 28(3): 368-378.

11.Yang P, Xin P, Lei X, et al. Investigation and optimization of an intelligent power module heat sink using response surface methodology[J]. Case Studies in Thermal Engineering, 2021, 28: 101410.

12.Yang P, Zhang T, Zhang Y, et al. Model of R134a liquid–vapor two-phase heat transfer coefficient for pulsating flow boiling in an evaporator using response surface methodology[J]. Energies, 2020, 13(14): 3540.

13.Yang P, Zhang, YH, Wang S, Liu, YW. Experimental study on liquid-vapor two-phase pressure drop of pulsating flow in an evaporator. International Journal of Heat and Mass Transfer, 2020, 158, 119998.

14.Yang P, Zhang T, Zhang YH, Wang S, Liu YW. 2020. Model of R134a Liquid–Vapor Two-Phase Heat Transfer Coefficient for Pulsating Flow Boiling in an Evaporator Using Response Surface Methodology. Energies, 2020, 13(14): 1-19.

15.Yang P,Zhang YH, Wang XF, Liu YW. Heat transfer measurement and flow regime visualiztion of two-phase pulsating flow in an evaporator. International Journal of Heat and Mass Transfer, 2018, 127: 1014-1024.

16.Yang P, Chen H, Liu YW. Application of response surface methodology and desirability approach to investigate and optimize the jet pump in a thermoacoustic Stirling heat engine. Applied Thermal Engineering, 2017, 127: 1005-1014.

17.Yang P, Liu YW, Zhong GY. Prediction and parametric analysis of acoustic streaming in a thermoacoustic Stirling heat engine with a jet pump using response surface methodology. Applied Thermal Engineering, 2016, 103: 1004-1013.

18.Yang P, Chen H, Liu YW. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine. Journal of Applied Physics, 2017, 121(21): 214902.

19.Yang P, Liu YW. Computation of the influence of a phase adjuster on thermo-acoustic Stirling heat engine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014: 0957650914553616.

20.Zheng Y, Yang P*, Liu Y, et al. Parametric optimization and analysis of thermodynamic venting system in liquid hydrogen tank under microgravity[J]. International Journal of Hydrogen Energy, 2021, 46(80): 40041-40053.

21.Chen P,Yang P, Liu L, et al. Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model[J]. Energy, 2021, 219: 119658.

22.Liu YW, Yang P, Influence of inner diameter and position of phase adjuster on the performance of the thermo-acoustic Stirling engine. Applied Thermal Engineering, 2014, 73(1): 1139-1148.

23.Ye WL, Yang P,, Liu YW. Multi-objective thermodynamic optimization of a free piston Stirling engine using response surface methodology. Energy Conversion and Management, 2018, 176: 147-163.

24.Zhong GY,Yang P, Liu YW. Heat transfer and pressure drop correlations by means of response surface methodology. International Journal of Heat and Mass Transfer, 2018, 119: 312-332.

25.Liu L,Yang P, Liu YW. Comprehensive performance improvement of standing wave thermoacoustic engine with converging stack-Thermodynamic analysis and optimization. Applied Thermal Engineering, 2019, 160: 114096.

人才称号:

2022年入选 “绿谷精英·创新引领行动计划”人才

联系方式
电子邮箱:yp2019@mail.xjtu.edu.cn
联系电话:15529569615
联系地址:创新港1号巨构3078
更新日期:2024-03-26